UNCLASSIFIED _
AD: 26&136

Repraduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govermn-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data 18 not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



> Mathematiocal Soiences Direotorate, Alr Force Office of SBcientific Research
Washington 285, D.C.

© b2 —EROK
™
University of Miami

| AFOSR report number: AFOSR @ 1091
LIMITS AND BOUNDS FOR DIVIDED DIFFERENCES ON A JORDAN

"

I 4

) CURVE IN THE COMPLEX DOMAIN . -
’
i ]
— J.H. Ourtiss
&
< 16 October 1961
c= AF 49 (638) - 863 TIPDR t
¢y Ktmtract: '
P
t 7 =~ Let Sn+1 be a set of n+l pointe lying on a Jordan curve O, let f
oo
- " be:a funotion given on C, and let d, denote the divided difference

1

Liad e

Efg"pﬁ order n formed for f in the points Sps1e It is proved that if the

—

.(n-l)-th derivative of f exists and satisfies a Lipschitz ocondition,
and C satisfies a mild smoothnees restriction, then ’dnl ie uniformly
bounded for all choices of S, in which the points are distinot. An
,extension to confluent points is given. In the case in which O is the
unit-ocircle, the structure of the bound ie displayed. It is also
ehown for a general O that if the pointe of the sequence 83, 83, ...

become everywhere dense on C in a certain way, then A350°n+ldn -

js f dz / 3Wi , where ¢ is the tranefinite diemeter of C,

Qualified requestors may obtaln copies of thies report from the ASTIA
Document Service Center, Arlington Hall Station, Arlington 13, Virginia.
Department of Defense contractore must be established for ASTIA ser-
vices, or have thelr "need-to-know" certified by the cognizant military

agency of thelr project or contract,

268 336



R e ]

Limite and Bounds for Divided
Differences on a Jordan Curve
in the Complex Domain®

by
J.H. Ourties
University of Miami

1, Introduction, Let 3n+1 ={zl,za,...,zn*1} be a set of nél
complex numbers and let f be a function on a set containing 8n+1 to
the oomplex numbers, The divided difference dn = dy(f]2),25,...,2,,4)
of order n formed for the function f in the pointl"9n+1 ie defined in

a recursive manner ae follows:
f(ll) - f(ZQ)

dl = dl(f,zl,zz) =

21 - 22
da = da(fhl-'zv’a) = dl(f’S]_.Za) - dl(fllsola)
z] - 23

dTl - dn(f’zl,za,...,zn+1)

dn_l(flzl,ZZ,...,Zn) - dn_l(flz!l*lgzz’ooo,zn)

The definition requires further discuseion when the points in 8., are

not all distinct. We shall suppose that they are distinot unleess pro-

*Thie research was supported by the United States Alr Force through
the Air Force Office of Scientifio Research of the Air Research and
Development Command, under Oontract No, AF 49(638) - 863,

#4 §e use the worde "points* and "numbers" interchangeably in referring
to the argumente in divided differences. This follows the practice
in interpolation theory. It is consistent within this terminology
to epeak of "coincident points" z,.
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vision is explicitly made for coincidences,
It oan be proved by induction [1, p.15] that if
‘°n+1(‘) = (z-27)(2-23) ... (z-zn+1),

h
then n+l £(2x)

(1.1) 9 T w'pealeg)

where the prime denotes differentiation of cdn+1(z) witkh respect to &,
This formula ehows that d 18 a eymmetric funotion of g,, 23, ..., Zpel

The divided differences of a function given on the real line play
e prominent role in the mathematics of computation, Their counterparte
in the complex plane have appcared in various classical studies of ap-
proximation by complex polynomials., The formal algebra of complex di-~
vided differences is of course much the seme as for the real ocase, but
the analytical properties of complex divided differenoos, such as as-
ymptotic behavior and representability by integrals, are in some cases
quite different. It would appear that these analytical properties have
not received much attention in the literature, although some of them
seen interesting.

A primary motivetion for the present paper was the need to estab-
lish that under certain smoothness hypotheses on a function £ given on
a Jordan ocurve C, the divided difference of f of a fixed order formed
in pointe on O are uniformly bounded in madulus for all choices of the
pointe. This property was required in a study of complex interpelatien
in random points, to be published oleowhorc[fB] . The existence of the
bound is proved in Section 2@ below for the caee in which O ie the unit
circle. The extension to more general Jordan curves appears in Section
3. In Section 4, the asymptotic behavior of successive divided differ-
ences of order n formed in n+l pointes on a Jorden ourve, n =1, 3, ..., ,

which in their totality become everywhere dense in a certain way on
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the curve, is investigated. It le found that the behavior to be ex-
peoted in cases impertant in the theery of complex interpelatien is
that the n-th divided difference multiplied by the (nél)=th pewer of
the transfinite diameter, er capaoity, ef the ourve O in questien ap-
preaches the limit jb £ dg / (3M4).

As was mentiened abeve, the impetus for this study came frem a
particular applicatien. It is heped that the resulte may turn eut te
be useful in ether direotiens, Howevsr, the general spirit in whioh
thie paper is written ie that of interest in the subjeot fer itself

alene, and the pessible applicatione will net be coensidered further,

3. Ap uwpper bound for the medulus ef @ divided difference
formed on the unit oircle. If the numbers z, are all real numbers, and

if £ is continueus en & clesed interval T of the real line oentaining
8p,1 80 pessesses an n~th derivative £(1) ot each point of the cerre-
spending epen interval I, then by elementary calculus [lw p.34] it oan
be shown that there exists a number x4, in I such that d, = f(n!x.)/n!.
Thus if ’ f‘“’, ie unifermly bounded everywhere en I, se also is

|4a] ter all cheices ef 8p,1 OO T. Again,with reel peints 8, .,, 1f
1(o-1) 44 abselutely continueus [ 3, pp.364 ff.] en Y, then the iterated
integral en the right side of the fellewing fermula (in whioh we define

Zhe3 08 meaning zl),

(3.1) aalt | 2y, g, vens 2gyq)
1 n

Yp.1
= LJ.'"L f(n)[za +%( ¥y (R443 - 23,1)] dy; dyg ... 0y,

hae meaning fer all cheices eof sn+1 in which the pointe £y are die-
tinot, and indeed can be used te extend the definition of 4, te cases

invelving cenfluent points, It ie easily shown by induction that the
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formula 1s trus [1, p p. 17-18] . Taus it fellews wita £{%~1) guee-
lutely ocontinueus and ’f(n)' , waere it exists, unifermly beunded en
I, that |4 | is alee wiiferaly beunded fer all cheices of B2 ¢ b 4
such that oempletien ef the definitien ef d threugh (3.1) is pessible,
If M ie the least upper beund of ’t(“)’ on I, then ltnlﬁ M/ al .

The formulae (3.1) is ne lenger generally valid when the nwmbers
8n41 876 not all real, and the derivatien ef a beund fer "n' in
terus of a given beund fer 'f(n) l is net se readily acceamplished,
In the remainder ef the seoctien we shall censider this preblea in the
cese¢ in whioh 8

n¢
In the develepaent, we shall use & complex-variable type of inter-

1 lies on the unit cirole in the ceamplex plane,

pretation of the derivatives ef a funotien g given en the oirole
C: |s| ®= 1, The symbel ;(1)(31) will mean

s d(gfz,8;) = Mn  g(s) - g(z;) , Jeg] =1, lsgf= 1,
g-.zl 8-’21 g = 81

previded of ceurse that the limit exists, Higher derivatives c(k) are
te be defined recursively. The cirole O can be parametrised in a
ene-te-one manner by the equatien g = .10, with ol € 0<o¢ ¢+ 37 ,
where o is chesen arbitrarily., If thie ie done, then

Do = 4% - B

The ohief result ie this:

Ibgeges 3.1 Let the funotien f bo givep ep Ot |ef = 1 tegether with
sts gizet n-1 derivasives £(1), £48), [ #(P1) 1os s petnte

8,1 1ie en O snd be dietinos. Ten 3f £(°-1) gatiefies the Lepechits
genditien:

, t(n-l)(z) - f(n.l)(t), < ,”z - t’, A>0 ,

foer 1l z and t en O, it fellews that
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r E}D-l
3 An
(3.3) ldn(f l 81,23 ...,zn+1)| = r{(:_s}_)

- uniformly for ell euoch 8,.;, where A, 1is the least u ound
| |£®e) |, o] = 1.

The syabol Pin (3.3) refers to the Gamma Funotion.

The hypothesis on t(n'l) is equivalent to requiring that f£{n-1)
be abeolutely continuous on |g| = 1, and that it therefore be the
indefinlte integral of a derivative f(n> existing everywhere on |z| = i
with the possible exception of a set of Lebesgue measure gero., More-
over the implication is that | £{n) | , on the set whers 1t exists, is
bounded and its least upper bound ’\n does not exceed A .

Our preof depends on integral representations, and it is imper-
tant to be explioit about the integral caloulus te be used.

1% on the unit oirole. The

Oonsider two points 01‘3 and o
oemplex line integral of a funotion g given on the unit oircle ex-
tended over either ene of the two arcs of the oircle joining these
poix;ta, directed f{row 91“3 i1} 0”‘1, is to be defined as a Lebesgue
integral with resp.oot to the parameter 6 1n the parasetrigzation

e = ot? . Tuat is, 17 & 16 the onosen directed arc, then

o
(3.3) ]‘g(s)dz = f“:s(.iﬂ) 101849 .

If g 4@ continuous in a neighborhood of ,1“1 » then

(3.4) g;ul j gle)de = g1 “1«; = &le )
A

The notatien for the integral on the right eide of (3,3) is ambigueus

in that it does not indicate which one of the two pessible directed

arcs A is being integrated over, Hewever in the sequel we shall be
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dealing enly with cemplex line integrals en |zl = 1 whioh are inde-
pendent of the path ef integratien. Such an integral extended ever

either aro directed fivm 3 te 2;,|21} = |zl = 1, will be denoted by

s
f lg(l)dz. If the two arcs jeining z3 te s; are of equal length,
]

then o{; = oy £ T, se the variatien of @ in (3.3) is ever s olesed
inteval of length 7/ o2 whioh ene endpeint is o{gz. 1f the twe paths

are net ef equal length, then the sherter one cerrespends under

g = °19 te an interval of values eof 6 of whioch ene endpoint is 0(3

and the ether one, say ¢/, is suoh that g; = ¢iX1w KT

et 5 -a'| < T . (For exemple, if o) and o(; are restricted te
the interval [0,3M] and 1f of3>o(,, oz - «, > 1T, then we take
o' = 3T4ag.)

We shall now drop the parentheses around supersoripts indi-
cating derivatives of funotiong but it is to be understeod that super-
soripts can also be exponents when the context requires, as in (s - lz)k.
In the case of divided differences, a derivative supersoript will al-
ways ‘indicate a partial derivative witbh respect to the first argument
when the netatien in the first parsgraph ef the Intreduotien is being
used. That is,

(k)
k 'q a d‘(flll,za,....lul)
dm 2 dn (f'zl.'apcoo"ul) 3
| a,IIkT
The preof depends en two lemmas, of which the firet is es
fellews,
Lemus 3.1 Let the funotion f given on O : J]z) = 1 De suoh that ite
(n-1)et derivetive ezists everywhere on O gnd ie absolutely centinuous,
Then f £ b-1h
b gg (t-23) £ (%)av

-1
(3.5) d; (f]e1,23) =

(zy - 23)b
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|egl =1, |sgl =1, =, ¢85 ns=1,3,...,0.
Ihe integrel je indepepdent of tbe peth ef integratien ep O.

The absolute continuity of £2°1 implies the absolute oontinui ty
of £, t1, £8, ..., 92  and g0 implies that each of these funotions
{noluding f*1 4s the indefinite integral of its derivative.

In the osse h = 1, with 8; = 01"1, 2= 0143,

jla £'(t) dt j.g ‘.(019) 1019 af

.1 - '3 g - 23

t('l) -‘1(83)

8 - %3

4:3”
_[(3 f'(eie) 1019 a0

The second and fourth members of the equation show that whether
0(1>a(3 or o, <A(;, the integral ie independent of the path, Thus
the Lemma ie true for h = 1,

Suppese now that (3.5) gives a valid representation of df'l,lﬂk
<h, with the integral independent of the path and 2z, # ;. Then
using (3.4), we have after a brief computation

(3.6) 4= oq"t (s - 50" £5(xy) - kf:; (t - 23)% £5() as
of1 = {2y - sg)k41

Because of the abeolute continuity of tk, integration by parts is

valid in the integral in (3.6), with £X to be differentiated and
(t - za)k'l to be integrated with respeot to t. We thereby immediately
obtain (2.5) with h = k + 1, and the integral ie agsin independent of
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the path, 7The premises of the induotien are true for k = 1, se this

establishes the Lemma,

% ~ hMMEA 3-3 Lt the funotiop & be givep et all poipte en Is| = 1 mith
’ 1 ) o ; let

le(s)| <M yhere defined on |e| = 1, and let g be suoh that

1,(a1,09) = Jar(t - 85" g(t)at, |oyl = |gg] = 1, kZ 0,

hen
(8.7) I 11'183.::) , < .[1;. __% , k=0,1,3,...,

for 811 =, and =g, ) Fz3, R [s| = 1.

When k = O, the right side of (3.7) reduces to TTM/3, g
ol

For the preof, we make the shorter arc joining la' and 5) = o"dl

(er either of the two arcs if they are equal in length) ocorrespend

18 te a 0 - interval [a(a,d.'] or [o('.‘l’al » where o/ '

]
ie swd that 5, = o' wndfog - | ST . Toue

under ¢ = ¢

1,(s,,35) =f::'(°15_ «""‘3)k 8(010) lciade .
For the case k = O, we use the inequality ,-mo l?'a 9/17,,
- 1M/a € B<17/3a , which is merely an expreseion ef the fact that
oin @ 46 oonvex on [0,77'/2]. Vo also use the identity ol%_ o18 =
a1 .1(o£+p)/3 einf(d-@)/ﬂ] . Then since ,d' -olg ,/85"’/3. it
follews that |3. - s3] = [ 3 etn [ b -ag)/3]| =(a/m)a . (o -2)/3] .
Fow |I,(z,,83) 'S M|l ~%3| , @0 the inequality (3.7) fellew

at once for k=1)
For k= 1 #e have (recalling the restriction onpd' -ocz| ),



(a.8) llk(ll,za) | uz* ”“’4' [unk(eifa_)[w]
.I-.T:—.;F:I s —8!‘!1 sin’* o - I |

Vs o

% 1okt o(r- ' ’
S

We make the substitutien @ =|§ -of3]/3 1n the integral and let
1 Sb(' -A(a ) /3 577/3‘ . By examination of the varieus cases cerre-

spending te k even or odd and 'Kz , «'>olz Wve find that the right-
hand member of (3.8) is always equal to

3 .
" jo eink (5 ap Cas .
aink“' 1 B

Inspection of ite derivative shows that S(J) inoreases steadily with
4 en the interval 0£V<T/3 . The value of 8(/I/3) 1s given by the
well ‘known formula

[t wrsie o I T
0 T P(
Thus

M ) Al F(‘?)M ’
e T TR p(wa)

as was te be proved.

=

]

,Ik (29, zz)l 3(

Now let g 4in Lemma 3.3 be £® and M be An, where £ i
the funotien appearing in the Theorem. The twe lemmas establish that

(3.9) 41" (eley,np) = Anyz_r[:(‘ » 51# 83



As a funotion of &, d;""! 1e continuous for 2,# 23 end uniformly
bounded in modulus, Oonsider next d;%-3(f{z),z;) es a funotion of

z) . This funotion has a continuous derivative for 2y @ 23, which

is moreover uniformly bounded in modulus. Therefore this funoction is
absolutely ocontinuous in z; for s; on any olosed aro of the unit circle
net oontaining £3. But the uniform boundednese of ldln'l | implies
that dln'a(f]zl,za) ie of uniformly bounded variation in gj on the
entire unit oircle with the point z5 deleted. By & well-known theorem
[3,p.372,l:x.61 it follows that as 2; approaches 23 from either side,
dln'a approaches a liamit; and if the limit is the same for approach
from either eide, then when the definition of dln"a is completed by
this limit at £, = 23 the funotion d;™3 will be an absolutely con-
tinuous function for all g, on (zll = 1, To investigate the limit,
we write (3.5) in the form

C (% ol N=3 n—} ¢] |
J (o0 - o%3)" 7% £(31604,.10 49
dln-a = °(8 . 4
- - et -
L (e fizlfé n-1 ) (éae’(l*“aylffn '

The 1init as 2;w» 23, °‘l"°‘a’ of the expression in square brackets
can be evaluated by L'Hospital's rule used with (3.4) and with the
faot that £7"1 18 continuous, We find that for z, approaching gz,
on either eide, there ies the unique limit

n-a

n-1
an  d)(f]ey,25) = T (25)

n-3
Thus with proper completion of the definition of d; at 2, = 23,

this funotion is an absolutely continuous function of 2y for all

,"1' = 1, Similarly we can complete the definition of dlh(f’ z1,%3)
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for h * n-3, n-4, ..., 1, 0, 80 that the resulting funotion is in each

case an absolutely continuous funotion of gy for all |z, = 1. ¥

ssume h fo ithout ¢oh n _notation that for each relevant
yalug of b, the proper extension of the definition of d)® at £ = s
has beep made.

Vhat this establishes is that the completed first order divided
difference dl(tl g1,23), 88 & funotion of g;, together with ite first
n-3 partial derivatives with respect to z,, have the same smoothness
and integrability properties as does f and its firet n~-l1 derivatives.

That is to say, d,, dla, vees dln'a

are absolutely continuous functiens
of s; and moreover the derivative of dln'a, where it exists, is uni-
formly bounded in modulus,

The absolute continuity of the derivatives permite the inductive
argument which we used to establish (3.5) to be used again to prove

that

1
dg (flzl,za,zs) ‘-'-'é-z—lg,-l— d1(d1(f|z:za),z1v¢3)

1

21 h- h
Izs(t.‘ t3) d; (flt,e3)at

(zl - '3)h‘

lzll= 1’ 'zal-ll 31#23,11'1,3,..., n-1,

3 as a funotion of g, is uniformly

By (3.9) and Lemma 3.3, dg"

bounded in modulue, (It is not important at the moment t0 know how
n.

the bound depends on gz and 23.) The definition of dg 3, dan'4,

ceny d2 oan now be completed by continuity at 2; = 2; 890 that in each

case the resulting function of gz, is absolutely continuous on lzll =],

Again we assume without ochange of notation that the proper extensions

have been made,



Preceeding in this way, we establish the ochain of equationd

‘ - C ]
(8.10) a:.k - /lui(" = '1:,\1)n ‘ dﬁ-?z” t,83,...,8,)dt
. ) n-k¢l

)
(2, - 2py)

X
e
A
¥

!

k=1, 3, ..., n,
in whioh 4,0 4, 45" = £° . Theorem 3.1 now can be proved by baok
substitution into (3.10), beginning with (3.9) and using Lemma 3.3
at each ntige. Thus to start with, at least for 5, o 83 and £ ¥ B3

2-3| < (k) A_JFF(%)
< & 2| ]

Similarly,

,d:.a,é(ﬁr E))(ﬁ;{(?ﬁ;) LlT ;((a_)

and 80 forth, We finally find that

= T
=% g

as stated in the conoclusion of the Theorenm.

| &

It 18 olear from the proof that under the hypotheses of the
Theorem on £ , it 18 possible to extend or complete the definition
of d, by continuity eo as to admit point sete 8n+1 in whioch ocoin-
oidences ocour, and then (3.3) will etill be valid., To aveid further

complicating the discussion, we ehall not explore thie question under



the hypothesis of Theorem 3.1 on £, which was chosen as being a natu-
ral one for boundedness ofldnl in the oase of distinot points. (The
boundedness of d, -lt(zl) - t(za)ll | 21 - 23| 16 equivalent te a
Lipschitez condition on £,)

The method of proof with only elight modifications ocan be used
to eatablish the following result:

40805gn 3.3 Upder the hypothosis of Theorem 3,1 gopoerning f, apd

with the added hypotbesis that £(M) 48 ocontinuous op some opep azv
st |z)= 1 gonteining the point =), %he followipg equation complotes

the definition of d; by continuity for the gase in whioh all the
poipte sn+1 goincjde at gy
(n)

(3.11) d.n(f | zl,zl,....tl) - !.‘f.]‘;l .

ptd ¢(0) is everywhere gontinuous on |z| = 1, ghen (3.3) is valid
after proper completion of the definition of 4, for all ohojces ef
8,41 Mithout restrigtions as to colngidenges.

.We oconclude this section with two ocomments, In the first place
1t ie olear that by repeated back-substituticn inte (3.10), a single
formula for d,, in terms of P) involving repeated integration can
be written out. It would be somewhat similar in appearance to a
variant of (3.1) which appears in [4,p.18,ex.7].

In the second place, it may be that for n23 the bound in (3,3)
ocan be improved, For n= 1 it is the best bound pessible, as can be
geen from this trivial example: Let £ be real and let ite graph over
a period in the (0,f('oio))-plane be & line segment joining (0,0) teo
(7,M) and anether line segment joining (7,M) to (3M0). For this
funotien the maximum of d, is /3, the least upper bound of [£'| e
one, and the right side of (3,3) 1s (M/3):-1, which ie as smell as it
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can be, However the general bound was derived through Lemma 3,3 in
whioh the two pointe g, and gz were placed at opposite ends of a
diameter to obtain the numerical appralecal, Such wide-apart spacing
ie of oouree not possible for the oase of three or more pointe en the
unit oircle., The bound given by (3.1) in the real case under the hy-
pethesis of Theorem 3.1 18 A /n!, which is muoh smaller than that in
(3.8). It might be best to try to ebtain a bound in terms of the
lipsobitz oonstant A rather than the derivative bound Age

3. DBoundedness of the modulus of a divided difference formed opn
§ geperal Jordan Qurve. A generaligation of Theorem 3.1 te the case
in which the unit oircle is replaced by a more general Jordan curve is
not hard to derive. In doing @0, for esimplicity we shall not try te
keep track of the structure of the upper bound, and shall suppress
various details in the proof,

A Jordan ourve is homeomorphioc to a circle. It can be represented
by a parametric equation &z l¢(9). where¢1s continuous in the real
variable & with period 3T, and where for each given point £ on the
ourve, any two solutions of z = ¢(f) differ by an integral multiple
of 3T, Our oconeiderations here will be restrioted to Jordan curves
such that the first derivative d@/df= Y(#) extets for 2114 and
is continuous, and W(f) # 0 for a1l @ . Such a Jordan ourve will
be said to be "admissible, (Presuusbly in what follows the defini-
tion of admiesibility can be slightly relaxed,)

Leuza 3.1 1f z =¢(f) is a paremetrio equation of an admiseible
Jordan gurve, then there exist numbers m and M, O< m <M, sugh that

by -6y | .
S | o g

for all 0 and B,.



The divided difference appearing in the above inequality is te be
interpreted as meaning V’(Oa)/uioa when 91 =4, .
The existence of an upper bound M follews from Lemma 3.3 with

k= 0 and g(o"o) = W(O) /1910 . The existence of the lower bound can
be established by an elementary indirect argument which we omit®,

As in the unit oircle case, it is convenient to interpret the de-
rivatives of a funotion on a Jordan ourve to the complex numbers as
limits of complex-variable difference quotients. Speoifiocally for any
funotion g given on a Jordan curve C, the symbol g'(zl) means %&EI
d(g | 2, zl), g and z; on O, and higher derivetives are to be defined
recursively, If O is admissible, then

)
(o) = AGON . 3
Integrals are to be defined as in (3.3) with 1919 in that formula re-
placed by V’(&). With this replacement and with e“‘l replaced by

®og), (3.4) te valid. An integral over O with limits of integration
gy and 24 whioh is indepeadent of the path will be written as

‘j:; g(e)de. The notation implies of course that the arc over which
the integration takes place is directed from gz to z;. The derivatives
of divided differences are always partials with respect to the first
apparent argument.

The generalizetion of Theorem 2.1 18 as follows:

Jigorem 3.1, Let tne funotion f be given on an admissible Jordan gurve O,
1

together with £, fa, coes -1 Let go-1 satisfy the Lipsghitg
condition
[ 7Ye) - £22(e) [€AJe - &) ,A>0 ,

svarious related but deeper results will be found in [5, Seotion 8,5 J.
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for all =z gnd t on O. Let the pojnte S, « {'1"3"“’ znfl} die on
0 be dietinot. Jhen there exiets e oonstant M depending omly on
n,A, and 0, and independent of Sne1, 8uch that ‘%(f"h'a'--n'ml) ,
S\

The proof starte with a generalization of Lemma 3.1,

Lemna 3.3, Let the funotion f, given on an admissjible Jordan ourve O,
be suoh that its (n-1)-th derivative exists everywhere on O and is pb-
solutely oontinuous as & function of &, =z=@(f). Then

 /
Jz:(t - 2)" 1eB(3)at

(zl - za)-r ’

h-1

for r; and 23 o0 0, 2, ¥ 23, b =1, 3, ..., n, and _the intexral is
independent of the path of integration on O.

The argument used to establieh Lemma 3,1 carries over to Lemma

3.3 with only minor ochonges, and will not be restated here,

m 3.3 Let the funotion G be given on the admissible Jordan gurve

08gd tion of
|6 be bounded on O. and be such that
5]

Je(e1,23) = Iza(t - za)k a(t)at

je jindependent of the path of integration on O for all =, and =5 on O.
Then for each k, k * O,1,..., there existe a constant My, depending
only on G and O, and gugh that

Jk(‘l"a) l <
(zy - et |

for all z; and z3 on O, 2, % 23 .

The Lebesgue measure in the theorem means measure on the @ - 1ine
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after the transformation tb"lz 4.
To prove this lemma, we let 2, = ¢(°ﬁ), g3 -¢(°(3). t 8¢(ﬁ),

and write

(3.1) %k =
) (g, - 'a)“l
£%1
k¢l 10 1,k 419 46
ei"‘l_. J azlc - ) gle e ab
Bley) - Pity) e B Rt ,
where
10 16 o - ¢(’(z>
(3.a) ge Jto = WO —p—1g— [ V(B
e -8

By Lemma 3,1, the quantities in the square brackets in (3.1) and
(3.3) are both uniformly bounded in modulus for all 6,061, and ofy,
a;dz,o(l;{o(a. For any fixed &g, g(e"e) as given by (3.3) is integra-
ble, and ite modulus is uniformly bounded for all & and oz . The
1nte.gra1 in (3.1), oonsidered as an integral over an src of the unit
circle, is 1ndependent of the path of integration., Thus the hypothe-
ges of Lemma 3.3 are satisfied by g as given by (3.3)., The truth of
Lemma 3.3 now follows immediately,

Theorem 3,1 can now be proved by the use of Lemuwas 3.3 and 3,3
in the same way that Theorem 3.1 was proved, The hypotheses on f and
0 imply that fr(];}a) is an absolutely continuous function of 010 and
of §, and that 1ts derivative with respeot to@®(f), where it exists,
is uniformly bounded in modulus. The same i8 true for ite derivative
with reapect to € . (These facts follow from the existence of numbere

Al and )ta such that with g = eio , t = 31“‘,



| & tey - &t | =200 - e
< xll,‘e R SN

Here we used Lemma 3.1 in passing from the second member to the third
member of the chain.) The funotions f, fl, ... , 2 gare aleo abso-

lutely continuous and have uniformly bounded derivatives,
We can now re-establish the reoursion formulas (3,10), whioch look

exaotly the same as before and so will not be repeated here. The inte-
grale in (3.10) are of course now oomplex line integrals over O, There-
afte£ by back-substitution, using Lemma 3.3 at each stage, we establish
the existence of the bound for l dn l.

The analogous generalization of Theorem 3.3 is also valid. The
proper definition of d, for oonfluent points is again given by (3.11),
It is worth noting that what gives simplicity to our results and mini-
mizes the restrictions on C is the oomplex~variable type of definition

which we are using for derivatives of funotions given on 0.

4, mpto roperties of divide feren o on
°) curve, In this seotion we shall be considering an infinite

sequence of divided differences dl(f[zll,zla), da(flzzl,333,|33), ¢ e,

dn(flznl"nz"""n,n+1)' « .., formed for a function f given on a

Jordan gurve O in the z-plane. Do there exist sequences of point sets

sn+1 = {znl’ 2n3, eecey zn'n+1 } » ns 1’ 3, e e o G\IOD th‘t 1-;-“ dn

exists for all functions f belonging to an interestingly wide class;
and if so, what ie this limit?

Let D be the region interior to the curve O, let K be the unlim-
1ted region exterior to C, and let D be DyO. There exists an analytic

funotion
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(4.1) z=X(w)=ow+oo+;-1- +'3%+---.°>0,
univalent for |w)>1, whioh maps |w |>1 oonformally onto X

s0 that the points at infinity in the 2-plane and w-plane correspond,
Acoording to the Osgood-Taylor-Carath&odory Theorem, X (w) can be ex-
tended in a continuous and one-to-one manner onto |w|= 1, and
X(eie) =¢(€) then gives & parametric equation for 0 of the type oon-
8idered above in Section 3. The number ¢ is called the tranasfinite
diameter (Robins' constant, capacity) of C.

If a funotion f ie analytic on C, it ie also analytic in a region

(perhaps multiply connected) which contains O in ite interior. Let
16

w = Re in (4.1). There is a largest value of R, say L>1, suoh
that £ is analytic at every point of the intersection of OyuK with
the region interior to the Jordan curve Cp: g = X(feia), osfd =< an.
(See [6, p.79].) A ourve such as Op ie called a level curve of the

map given by (4.1).

16
mtn e, =X(e °5), 0= <37, let Ny(f) be the number

of elements of the set {in, 9:12’ cee Bn,m»l } falling into the

closed interval [0, 9] . The numbers enk , k=1, ..., n¢l, n=1,3,,,,

are said to be equidistributed on [ 0,8WJ1g M y (8)/(n41) = 8/atr;

and when this happens, the corresponding sequence of point sets sm-l'

n=13,..., is eald to be equidistributed on G,
Our first result is as follows:
Theorem 4.1 Let £ be analytic on D and let the geguenge {sn-}l} be

sguidistributed on 0. Let o be the largest value of |w| in the map
(4.1) such that f is analytio interior $o the level curve Cp. Then

for any R, 1< R=p, there exists & oonstant M depending on f, R, and
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O, but not on n, suoh thet

| tlagy oo o) 1€ e

Thus Mm o™a a0,

R-»00

To prove this, we use the formula [4, p.llJ

(4.3) dp = zh' ‘fonwn‘.l at , 0=<R<p,

where ‘”n+1(') = (2 - 2,;)(2=-253) 000 (2= ‘n,n+1) « This formula

can be used to complete the definition of dn by continuity for the case

of oonfluent points £, . We then refer to a olaseical result of

L. Fejer [7],[6, pp.267 22]: 1£{s,,, } is equidistsibuted on o
Jordap ourve O, then

(o) /4 el =0,

uniformly for 2 op any oloesed subset of K, This implies that if s lies
on Op and R; 1s suoh that 1<R;<R, then for all n suffioiently large,

n4l 1
—— = —pmy

Letting Mg be the maximum of |f(e) | on Oy, and Ly be the length of

Cg» we appralse (4.3) as follows:

nel MRLR
(4.3) (o) ’ dn"é E-Ff—R-rll_*'r

and the theorem follows from this.

Jheorem 4.8 Let O De rectifiasble, let f Dbe analytic on O, and
let 8p.1 be the transform under (4.1) of nsl distinot points equally
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speced on |w| = 1, Thep

n+l 1
(¢.4) n%ig' o 4 TTH };f(t)dt .

This is oonsistent with Theorem 4.1, because the sequence ‘{°n+1 &
in Theorem 4.3 is equidistributed and the integral in (4.4) would be
gero if f were analytic on D,

To prove the theorem we use a generaligzation of (4.3),

(4.5) %’zr'lil'joa+fo,z;‘nﬁ'?‘%rdt.

which 18 easily establ‘shed by the calculus of residues., Here °R'
R>1, is a level ourve of (4.1) and O' 418 e suitably chosen reoti-
fiable curve lying in D. The curvee Oy asd O' are chosen 80 that
{ 48 analytic on the oclosed annular region bounded by °R and Of,
Integration on O' ie in the opposite esense to that on °R'

The appraisal given by (4.3) is valid for the first integral in
(4.5), and it shows that this integral vanishes in the limit., The
£0110wing result of the suthor [8] 1s available for the second integral:

Jrom the hypotheses' of Theorem 4.8 on O gand Bn¢1 At follows that

nt+l
n}129‘0n+1(') / o = -1 unjformly for =z on any glosed subgpet of
D, This implies that

+1
o 1 L Qf__ﬂ.&.e_y dt
N =»oo ]
an “‘m—l v
n+l
_ 1} e _£(%
=FHJo oll w'—'("'?n“ s
1 2
= - @A Jo f(t)as = 3aL )y £(t)as,

whioch completes the proof,
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Generalizations of the above theorems to the case in whick D is
replaced by a finite number of mutually exterior Jordan regions oan be
developed by the methods to be found in Walsh's book fe,Ohnp.VIIJ}.

The results from which the above two theorems are derived were
originally established in studying the convergence of sequences of
polynomials found by interpolation to the function £ on O, Let
Lml(') » Ln+1(f3‘|3n+l) be the (unique) polynomial in g of degree
at mo8t n whioh is determined by the condition that it shall coincide
with f(z) at esch of the points 8/ ;, sssumed to be distinot., Then
from the stendard formula

£("nk
o) = 0 & SR

it ie seen by oomparison with (1.1) that

(a.8) L (edls,, ) awy 0d(tlz, ey o)
where f£(z) = g(z)/(a¢ - z). The following result of the author ['8],[9]

ie relevant: Let the gurye O be suchb that X'(w) is non-vanishing
of bounded varietiop for |w|= 1, Let g be bounded and inte-
1 he sense of Riemenn on C. Let the points Sp,; e the

transforme under (4.1) of distingt points egually 8 ed on the unit

girele. Ihen

Lim L 1(g;a¢lsn)- =T fo-éi-ﬁ-?,-‘dt

n-»00 n¢

uniformly for of on_any oclose¢d subset of D.
We now write (4.6) in the form

n¢l
(4.1 o™y = [' WJ [- Ln+1(3‘°“sn+l)} ’



If ol ie a fixed point of D and £ 18 bounded and Riemann integrable
on O, then 80 i8 g and oonversely, We recall that -%*1(06)/0“1

tends to unity at each point of D @8 n becomes infinite. It fol-
lows from these facts that the limiting value of (4.7) is

s ik [ den g [

Vo summarize formally:

Jheozem 4.3 If the points 8p,; aze treceforme under (4.1) of
0 11 on th irole, snd 3f O 4is guch
shat X' is -yanighin of boun variati jwi= 1, and

4f f 1is bounded and integrable ip the eense of Riemann op O, thep

e, 4= g [roar.
c
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